2024年10月8日,诺贝尔物理学奖揭晓,美国新泽西州普林斯顿大学的约翰·霍普菲尔德(John J. Hopfield)和加拿大多伦多大学的杰弗里·辛顿(Geoffrey E. Hinton) 因“使用物理学训练人工智能神经网络”获奖。诺贝尔奖官网表示,今年的两位诺贝尔物理学奖得主利用物理学工具开发了今天强大机器学习的基础方法。约翰·霍普菲尔德创造了一种联想记忆,可以存储和重建图像及其他类型的数据模式。霍普菲尔德于1933 年 7 月 15 日出生于美国伊利诺伊州芝加哥,出生在一个物理氛围浓厚的家庭当中,父亲是波兰物理学家约翰·约瑟夫·霍普菲尔德,母亲是物理学家海伦·霍普菲尔德。海伦是霍普菲尔德的第二任妻子。他是霍普菲尔德的第六个孩子。1954年,霍普菲尔德获得斯沃斯莫尔学院文学士学位,并于1958年获得康奈尔大学物理学博士学位,师从知名物理学家阿尔伯特·奥弗豪泽 (Albert Overhauser ) 。霍普菲尔德在贝尔实验室的理论小组工作了两年,随后在加州大学伯克利分校(物理学)、普林斯顿大学(物理学)、加州理工学院(化学和生物学)任教,并再次回到普林斯顿大学,成为霍华德·A·普赖尔 (Howard A. Prior) 分子生物学名誉教授。他早期聚焦于物理化学和凝聚态领域研究。后来在贝尔实验室工作期间,对分子生物学产生了浓厚兴趣。1980年,霍普菲尔德离开了普林斯顿大学,他不愿再研究凝聚态物理研究,而是接受了加州理工学院(位于南加州帕萨迪纳)的化学和生物学教授职位。在那里,他可以免费使用计算机资源进行实验并发展他的神经网络思想。但霍普菲尔德并没有放弃物理学的基础,1986年,霍普菲尔德与他人共同创立了加州理工学院计算与神经系统博士项目,并发现了联想记忆神经网络技术,通常称为“霍普菲尔德网络”。1973年,霍普菲尔德于当选为美国国家科学院院士,1975年当选为美国艺术与科学学院院士, 1988年当选为美国哲学学会院士。1985年,霍普菲尔德获得美国成就学院金盘奖。2005年,他获得了阿尔伯特·爱因斯坦世界科学奖。2006年,他担任美国物理学会主席。霍普菲尔德与迪帕克·达尔共同获得了2022年统计物理学玻尔兹曼奖章。杰弗里·辛顿发明了一种能够自主发现数据属性的方法,从而执行识别图片中特定元素等任务。出生在英国的辛顿,之前曾在英格兰和苏格兰学习过实验心理学和人工智能,于1970年获得剑桥大学实验心理学学士学位;1976年受聘为苏塞克斯大学认知科学研究项目研究员;1978年获得爱丁堡大学人工智能学博士学位。1978年至1980年担任加州大学圣地亚哥分校认知科学系访问学者;1980年至1982年担任英国剑桥MRC应用心理学部科学管理人员;1982年至1987年历任卡内基梅隆大学计算机科学系助理教授、副教授;1987年受聘为多伦多大学计算机科学系教授;1998年至2001年担任伦敦大学学院盖茨比计算神经科学部创始主任;2001年至2014年担任多伦多大学计算机科学系教授;2016年至2023年担任谷歌副总裁兼工程研究员;2023年从谷歌辞职。基于霍普菲尔德网络,20世纪90年代,辛顿与他的同事特伦斯·塞诺夫斯基利用统计物理学的工具,创建了一个采用不同方法的新网络:玻尔兹曼机。它可以学习识别给定类型数据中的特征元素,通过输入机器运行时很可能出现的示例来训练机器。玻尔兹曼机可用于对图像进行分类,或创建训练模式类型的新示例。同时,作为学术开拓者,2006年,辛顿与同事 Simon Osindero、Yee Whye Teh 和 Ruslan Salakhutdinov 开发了一种使用一系列逐层叠加的玻尔兹曼机对网络进行预训练的方法。这种预训练为网络中的连接提供了更好的起点,从而优化了其训练以识别图片中的元素。辛顿则是反向传播算法和对比散度算法(Contrastive Divergence)的发明人之一,也是深度学习的积极推动者,被誉为“深度学习教父”。辛顿因在深度学习方面的贡献与约书亚·本希奥(Yoshua Bengio)和杨立昆(Yann Le Cun)一同被授予了2018年的图灵奖。同时,目前他还是加拿大皇家学会院士,美国国家科学院外籍院士,多伦多大学名誉教授。多份研究成果显示,辛顿帮助机器学习和 AI 技术开启了新的发展时代。目前已经有许多研究人员都围绕机器学习开发和应用,如今风靡全球的人工智能聊天机器人ChatGPT,也都基于辛顿和霍普菲尔德的研究成果。凭借自20世纪80年代以来的工作,两位科学家为机器学习和 AI 革命奠定了重要基础。诺贝尔物理学奖委员会主席艾伦·穆恩斯(Ellen Moons)表示:“诺贝尔奖得主的工作已经产生了巨大的效益。在物理学中,我们把人工神经网络应用于广泛的领域,比如开发具有特定性能的新材料。”从今年的诺贝尔物理奖得主的研究领域,数字孪生体联盟成员可以从中获得一些启发,当前正在逐步形成的数字孪生体科学体系,很可能会出现未来的诺贝尔物理学奖获得者。